If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3p2 + 7p + 3 = 0 Reorder the terms: 3 + 7p + 3p2 = 0 Solving 3 + 7p + 3p2 = 0 Solving for variable 'p'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. 1 + 2.333333333p + p2 = 0 Move the constant term to the right: Add '-1' to each side of the equation. 1 + 2.333333333p + -1 + p2 = 0 + -1 Reorder the terms: 1 + -1 + 2.333333333p + p2 = 0 + -1 Combine like terms: 1 + -1 = 0 0 + 2.333333333p + p2 = 0 + -1 2.333333333p + p2 = 0 + -1 Combine like terms: 0 + -1 = -1 2.333333333p + p2 = -1 The p term is 2.333333333p. Take half its coefficient (1.166666667). Square it (1.361111112) and add it to both sides. Add '1.361111112' to each side of the equation. 2.333333333p + 1.361111112 + p2 = -1 + 1.361111112 Reorder the terms: 1.361111112 + 2.333333333p + p2 = -1 + 1.361111112 Combine like terms: -1 + 1.361111112 = 0.361111112 1.361111112 + 2.333333333p + p2 = 0.361111112 Factor a perfect square on the left side: (p + 1.166666667)(p + 1.166666667) = 0.361111112 Calculate the square root of the right side: 0.600925213 Break this problem into two subproblems by setting (p + 1.166666667) equal to 0.600925213 and -0.600925213.Subproblem 1
p + 1.166666667 = 0.600925213 Simplifying p + 1.166666667 = 0.600925213 Reorder the terms: 1.166666667 + p = 0.600925213 Solving 1.166666667 + p = 0.600925213 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + p = 0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + p = 0.600925213 + -1.166666667 p = 0.600925213 + -1.166666667 Combine like terms: 0.600925213 + -1.166666667 = -0.565741454 p = -0.565741454 Simplifying p = -0.565741454Subproblem 2
p + 1.166666667 = -0.600925213 Simplifying p + 1.166666667 = -0.600925213 Reorder the terms: 1.166666667 + p = -0.600925213 Solving 1.166666667 + p = -0.600925213 Solving for variable 'p'. Move all terms containing p to the left, all other terms to the right. Add '-1.166666667' to each side of the equation. 1.166666667 + -1.166666667 + p = -0.600925213 + -1.166666667 Combine like terms: 1.166666667 + -1.166666667 = 0.000000000 0.000000000 + p = -0.600925213 + -1.166666667 p = -0.600925213 + -1.166666667 Combine like terms: -0.600925213 + -1.166666667 = -1.76759188 p = -1.76759188 Simplifying p = -1.76759188Solution
The solution to the problem is based on the solutions from the subproblems. p = {-0.565741454, -1.76759188}
| -16x^2+65x-46.5=0 | | 5x(x+2)-3(x-1)= | | 5(10-3x)=15 | | -4x^2-17x-15=0 | | X^2+8=-3x | | x^2=2(2x+6) | | (6x/2y^2)(6xy/5x^20 | | (2x-3)(x^2-2x+1)= | | 21=11x+2x^2 | | x+3.4=20.91 | | (6n-4)(6n+4)= | | 10+6x=-4x | | 4w+2=2w | | 32/x=1.5 | | 14x^2-54x-8=0 | | (2k-1)x+(1-k)y-1=0 | | ln*(x-6)+ln*3=ln*19 | | 15x+45=24x | | X^4-63/4x^2-4 | | p(x)=x^2+2x-5 | | (2k-1)x+(1-k)y+1=0 | | 40x^2-11x-21=0 | | 4.2x+6=4x+6 | | sinx=.84 | | 2x-12/-3=7 | | ax=c | | y=5sinx-12cosx+7 | | 6log^9(3)=x | | 3(-4-3*2)= | | g-15=5 | | 6c+56+52=180 | | ln(0.5)/ln(e) |